Reversible strain-induced magnetic part transition in a van der Waals magnet
5 mins read

Reversible strain-induced magnetic part transition in a van der Waals magnet


  • 1.

    Music, T. et al. Large tunneling magnetoresistance in spin-filter van der Waals heterostructures. Science 360, 1214–1218 (2018).

    CAS 
    Article 

    Google Scholar
     

  • 2.

    Klein, D. R. et al. Probing magnetism in 2D van der Waals crystalline insulators through electron tunneling. Science 360, 1218–1222 (2018).

    CAS 
    Article 

    Google Scholar
     

  • 3.

    Wang, Z. et al. Very giant tunneling magnetoresistance in layered magnetic semiconductor CrI3. Nat. Commun. 9, 2516 (2018).

  • 4.

    Kim, H. H. et al. A million p.c tunnel magnetoresistance in a magnetic van der Waals heterostructure. Nano Lett. 18, 4885–4890 (2018).

    CAS 
    Article 

    Google Scholar
     

  • 5.

    Burch, Ok. S., Mandrus, D. & Park, J.-G. Magnetism in two-dimensional van der Waals supplies. Nature 563, 47–52 (2018).

    CAS 
    Article 

    Google Scholar
     

  • 6.

    Mak, Ok. F., Shan, J. & Ralph, D. C. Probing and controlling magnetic states in 2D layered magnetic supplies. Nat. Rev. Phys. 1, 646–661 (2019).

    Article 

    Google Scholar
     

  • 7.

    Li, T. et al. Strain-controlled interlayer magnetism in atomically skinny CrI3. Nat. Mater. 18, 1303–1308 (2019).

    CAS 
    Article 

    Google Scholar
     

  • 8.

    Music, T. et al. Switching 2D magnetic states through stress tuning of layer stacking. Nat. Mater. 18, 1298–1302 (2019).

    CAS 
    Article 

    Google Scholar
     

  • 9.

    Chu, J.-H. et al. In-plane resistivity anisotropy in an underdoped iron arsenide superconductor. Science 329, 824–826 (2010).

    CAS 
    Article 

    Google Scholar
     

  • 10.

    Hicks, C. W. et al. Sturdy enhance of Tc of Sr2RuO4 beneath each tensile and compressive pressure. Science 344, 283–285 (2014).

    CAS 
    Article 

    Google Scholar
     

  • 11.

    Chu, J.-H., Kuo, H.-H., Analytis, J. G. & Fisher, I. R. Divergent nematic susceptibility in an iron arsenide superconductor. Science 337, 710–712 (2012).

    CAS 
    Article 

    Google Scholar
     

  • 12.

    Mutch, J. et al. Proof for a strain-tuned topological part transition in ZrTe5. Sci. Adv. 5, eaav9771 (2019).

    CAS 
    Article 

    Google Scholar
     

  • 13.

    Ceballos, A. et al. Impact of pressure and thickness on the transition temperature of epitaxial FeRh thin-films. Appl. Phys. Lett. 111, 172401 (2017).

    Article 

    Google Scholar
     

  • 14.

    Haskel, D. et al. Strain tuning of the spin-orbit coupled floor state in Sr2IrO4. Phys. Rev. Lett. 109, 027204 (2012).

  • 15.

    Hong, S. S. et al. Excessive tensile pressure states in La0.7Ca0.3MnO3 membranes. Science 368, 71–76 (2020).

    CAS 
    Article 

    Google Scholar
     

  • 16.

    Šiškins, M. et al. Magnetic and digital part transitions probed by nanomechanical resonators. Nat. Commun. 11, 2698 (2020).

  • 17.

    Wang, Y. et al. Pressure-sensitive magnetization reversal of a van der Waals magnet. Adv. Mater. 32, 2004533 (2020).

    CAS 
    Article 

    Google Scholar
     

  • 18.

    Ni, Z. et al. Imaging the Néel vector switching within the monolayer antiferromagnet MnPSe3 with strain-controlled Ising order. Nat. Nanotechnol. 16, 782–787 (2021).

  • 19.

    Pizzochero, M. & Yazyev, O. V. Inducing magnetic part transitions in monolayer CrI3 through lattice deformations. J. Phys. Chem. C 124, 7585–7590 (2020).

    CAS 
    Article 

    Google Scholar
     

  • 20.

    Wu, Z., Yu, J. & Yuan, S. Pressure-tunable magnetic and digital properties of monolayer CrI3. Phys. Chem. Chem. Phys. 21, 7750–7755 (2019).

    CAS 
    Article 

    Google Scholar
     

  • 21.

    Zhang, J.-M., Nie, Y.-Z., Wang, X.-G., Xia, Q.-L. & Guo, G.-H. Pressure modulation of magnetic properties of monolayer and bilayer FePS3 antiferromagnet. J. Magn. Magn. Mater. 525, 167687 (2021).

    CAS 
    Article 

    Google Scholar
     

  • 22.

    Xu, B. et al. Switching of the magnetic anisotropy through pressure in two dimensional multiferroic supplies: CrSX (X = Cl, Br, I). Appl. Phys. Lett. 116, 052403 (2020).

    CAS 
    Article 

    Google Scholar
     

  • 23.

    Hicks, C. W., Barber, M. E., Edkins, S. D., Brodsky, D. O. & Mackenzie, A. P. Piezoelectric-based equipment for pressure tuning. Rev. Sci. Instrum. 85, 065003 (2014).

    Article 

    Google Scholar
     

  • 24.

    Wilson, N. P. et al. Interlayer digital coupling on demand in a 2D magnetic semiconductor. Nat. Mater. 20, 1657–1662 (2021).

  • 25.

    Lee, Ok. et al. Magnetic order and symmetry within the 2D semiconductor CrSBr. Nano Lett. 21, 3511–3517 (2020).

    Article 

    Google Scholar
     

  • 26.

    Telford, E. J. et al. Layered antiferromagnetism induces giant unfavourable magnetoresistance within the van der Waals semiconductor CrSBr. Adv. Mater. 32, 2003240 (2020).

    CAS 
    Article 

    Google Scholar
     

  • 27.

    Wang, L. et al. In situ pressure tuning in hBN-encapsulated graphene digital units. Nano Lett. 19, 4097–4102 (2019).

    CAS 
    Article 

    Google Scholar
     

  • 28.

    Levy, N. et al. Pressure-induced pseudo-magnetic fields better than 300 Tesla in graphene nanobubbles. Science 329, 544–547 (2010).

    CAS 
    Article 

    Google Scholar
     

  • 29.

    Mao, J. et al. Proof of flat bands and correlated states in buckled graphene superlattices. Nature 584, 215–220 (2020).

    CAS 
    Article 

    Google Scholar
     

  • 30.

    Pető, J. et al. Reasonable pressure induced oblique bandgap and conduction electrons in MoS2 single layers. npj 2D Mater. Appl. 3, 39 (2019).

  • 31.

    Conley, H. J. et al. Bandgap engineering of strained monolayer and bilayer MoS2. Nano Lett. 13, 3626–3630 (2013).

    CAS 
    Article 

    Google Scholar
     

  • 32.

    He, Ok., Poole, C., Mak, Ok. F. & Shan, J. Experimental demonstration of steady digital construction tuning through pressure in atomically skinny MoS2. Nano Lett. 13, 2931–2936 (2013).

    CAS 
    Article 

    Google Scholar
     

  • 33.

    Lee, J., Wang, Z., Xie, H., Mak, Ok. F. & Shan, J. Valley magnetoelectricity in single-layer MoS2. Nat. Mater. 16, 887–891 (2017).

    CAS 
    Article 

    Google Scholar
     

  • 34.

    Andrei, E. Y. et al. The marvels of moiré supplies. Nat. Rev. Mater. 6, 201–206 (2021).

    CAS 
    Article 

    Google Scholar
     

  • 35.

    Hopcroft, M. A., Nix, W. D. & Kenny, T. W. What’s the Younger’s modulus of silicon? J. Microelectromech. Syst. 19, 229–238 (2010).

    CAS 
    Article 

    Google Scholar
     

  • 36.

    Ureña, F., Olsen, S. H. & Raskin, J.-P. Raman measurements of uniaxial pressure in silicon nanostructures. J. Appl. Phys. 114, 144507 (2013).

    Article 

    Google Scholar
     

  • 37.

    Mohr, M., Papagelis, Ok., Maultzsch, J. & Thomsen, C. Two-dimensional digital and vibrational band construction of uniaxially strained graphene from ab initio calculations. Phys. Rev. B 80, 205410 (2009).

    Article 

    Google Scholar
     

  • 38.

    Huang, B. et al. Layer-dependent ferromagnetism in a van der Waals crystal right down to the monolayer restrict. Nature 546, 270–273 (2017).

    CAS 
    Article 

    Google Scholar
     

  • 39.

    Giannozzi, P. et al. QUANTUM ESPRESSO: a modular and open-source software program undertaking for quantum simulations of supplies. J. Phys. Condens. Matter 21, 395502 (2009).

  • 40.

    Hamann, D. R. Optimized norm-conserving Vanderbilt pseudopotentials. Phys. Rev. B 88, 085117 (2013).

    Article 

    Google Scholar
     

  • 41.

    Grimme, S. Semiempirical GGA-type density useful constructed with a long-range dispersion correction. J. Comput. Chem. 27, 1787–1799 (2006).

    CAS 
    Article 

    Google Scholar
     

  • Leave a Reply

    Your email address will not be published. Required fields are marked *