Nanomedicine-enabled chemotherapy-based synergetic most cancers therapies | Journal of Nanobiotechnology
14 mins read

Nanomedicine-enabled chemotherapy-based synergetic most cancers therapies | Journal of Nanobiotechnology


  • 1.

    Chabner BA, Roberts TG. Chemotherapy and the struggle on most cancers. Nat Rev Most cancers. 2005;5:65–72.

    CAS 
    PubMed 

    Google Scholar
     

  • 2.

    Lin H, Chen Y, Shi J. Nanoparticle-triggered in situ catalytic chemical reactions for tumour-specific remedy. Chem Soc Rev. 2018;47:1938–58.

    CAS 
    PubMed 

    Google Scholar
     

  • 3.

    Matera C, Gomila AMJ, Camarero N, Libergoli M, Soler C, Gorostiza P. Photoswitchable antimetabolite for focused photoactivated chemotherapy. J Am Chem Soc. 2018;140:15764–73.

    CAS 
    PubMed 

    Google Scholar
     

  • 4.

    Nair RK, Christie C, Ju D, Shin D, Pomeroy A, Berg Ok, Peng Q, Hirschberg H. Enhancing the consequences of chemotherapy by mixed macrophage-mediated photothermal remedy (PTT) and photochemical internalization (PCI). Lasers Med Sci. 2018;33:1747–55.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 5.

    Zou Y, Wei J, Xia Y, Meng F, Yuan J, Zhong Z. Focused chemotherapy for subcutaneous and orthotopic non-small cell lung tumors with cyclic RGD-functionalized and disulfide-crosslinked polymersomal doxorubicin. Sign Transduct Goal Ther. 2018;3:32.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 6.

    Martin JD, Cabral H, Stylianopoulos T, Jain RK. Bettering most cancers immunotherapy utilizing nanomedicines: progress, alternatives and challenges. Nat Rev Clin Oncol. 2020;17(4):251–66.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 7.

    Yao VJ, D’Angelo S, Butler KS, Theron C, Smith TL, Marchiò S, Gelovani JG, Sidman RL, Dobroff AS, Brinker CJ, Bradbury ARM, Arap W, Pasqualini R. Ligand-targeted theranostic nanomedicines in opposition to most cancers. J Management Launch. 2016;240:267–86.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 8.

    Zhou L, Wang H, Li Y. Stimuli-responsive nanomedicines for overcoming most cancers multidrug resistance. Theranostics. 2018;8:1059–74.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 9.

    Yang N, Guo H, Cao C, Wang X, Tune X, Wang W, Yang D, Xi L, Mou X, Dong X. An infection microenvironment-activated nanoparticles for NIR-II photoacoustic imaging-guided photothermal/chemodynamic synergistic anti-infective remedy. Biomaterials. 2021;275:120918.

    CAS 
    PubMed 

    Google Scholar
     

  • 10.

    Peer D, Karp JM, Hong S, Farokhzad OC, Margalit R, Langer R. Nanocarriers as an rising platform for most cancers remedy. Nat Nanotechnol. 2007;2:751.

    CAS 
    PubMed 

    Google Scholar
     

  • 11.

    Gottesman MM, Fojo T, Bates SE. Multidrug resistance in most cancers: position of ATP-dependent transporters. Nat Rev Most cancers. 2002;2:48–58.

    CAS 
    PubMed 

    Google Scholar
     

  • 12.

    Meng X, Zhang X, Liu M, Cai B, He N, Wang Z. Fenton reaction-based nanomedicine in most cancers chemodynamic and synergistic remedy. Appl Mater Immediately. 2020;21:100864.


    Google Scholar
     

  • 13.

    Zhu Y, Shi H, Li T, Yu J, Guo Z, Cheng J, Liu Y. A twin practical nanoreactor for synergistic hunger and photodynamic remedy. ACS Appl Mater Interfaces. 2020;12:18309–18.

    CAS 
    PubMed 

    Google Scholar
     

  • 14.

    Solar L, Shen F, Tian L, Tao H, Xiong Z, Xu J, Liu Z. ATP-responsive good hydrogel releasing immune adjuvant synchronized with repeated chemotherapy or radiotherapy to spice up antitumor immunity. Adv Mater. 2021;33:e2007910.

    PubMed 

    Google Scholar
     

  • 15.

    Son J, Yi G, Yoo J, Park C, Koo H, Choi HS. Gentle-responsive nanomedicine for biophotonic imaging and focused remedy. Adv Drug Deliv Rev. 2019;138:133–47.

    CAS 
    PubMed 

    Google Scholar
     

  • 16.

    Liu J, Huang Y, Kumar A, Tan A, Jin S, Mozhi A, Liang X-J. pH-Delicate nano-systems for drug supply in most cancers remedy. Biotechnol Adv. 2014;32:693–710.

    CAS 
    PubMed 

    Google Scholar
     

  • 17.

    Liu G, Lovell JF, Zhang L, Zhang Y. Stimulus-responsive nanomedicines for illness prognosis and remedy. Int J Mol Sci. 2020;21:6380.

    CAS 
    PubMed Central 

    Google Scholar
     

  • 18.

    Guo Y, Ran Y, Wang Z, Cheng J, Cao Y, Yang C, Liu F, Ran H. Magnetic-responsive and focused most cancers nanotheranostics by PA/MR bimodal imaging-guided photothermally triggered immunotherapy. Biomaterials. 2019;219:119370.

    CAS 
    PubMed 

    Google Scholar
     

  • 19.

    Ding J, Chen J, Gao L, Jiang Z, Zhang Y, Li M, Xiao Q, Lee SS, Chen X. Engineered nanomedicines with enhanced tumor penetration. Nano Immediately. 2019;29:100800.

    CAS 

    Google Scholar
     

  • 20.

    Fan W, Yung B, Huang P, Chen X. Nanotechnology for multimodal synergistic most cancers remedy. Chem Rev. 2017;117:13566–638.

    CAS 
    PubMed 

    Google Scholar
     

  • 21.

    Prabhakar U, Maeda H, Jain RK, Sevick-Muraca EM, Zamboni W, Farokhzad OC, Barry ST, Gabizon A, Grodzinski P, Blakey DC. Challenges and key issues of the improved permeability and retention impact for nanomedicine drug supply in oncology. Can Res. 2013;73:2412.

    CAS 

    Google Scholar
     

  • 22.

    Li X, Ouyang Z, Li H, Hu C, Saha P, Xing L, Shi X, Pich A. Dendrimer-decorated nanogels: environment friendly nanocarriers for biodistribution in vivo and chemotherapy of ovarian carcinoma. Bioact Mater. 2021;6:3244–53.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 23.

    Ma Y, He P, Tian X, Liu G, Zeng X, Pan G. Mussel-derived, cancer-targeting peptide as pH-sensitive prodrug nanocarrier. ACS Appl Mater Interfaces. 2019;11:23948–56.

    CAS 
    PubMed 

    Google Scholar
     

  • 24.

    Akakuru OU, Iqbal MZ, Liu C, Xing J, Wei Z, Jiang Z, Fang Q, Yuan B, Nosike EI, Xia J, Jin Y, Zheng J, Wu A. Self-assembled, biocompatible and biodegradable TEMPO-conjugated nanoparticles allow folate-targeted tumor magnetic resonance imaging. Appl Mater Immediately. 2020;18:100524.


    Google Scholar
     

  • 25.

    Wang B, Van Herck S, Chen Y, Bai X, Zhong Z, Deswarte Ok, Lambrecht BN, Sanders NN, Lienenklaus S, Scheeren HW, David SA, Kiessling F, Lammers T, De Geest BG, Shi Y. Potent and extended innate immune activation by enzyme-responsive imidazoquinoline TLR7/8 agonist prodrug vesicles. J Am Chem Soc. 2020;142:12133–9.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 26.

    Li Y, Maciel D, Rodrigues J, Shi X, Tomás H. Biodegradable polymer nanogels for drug/nucleic acid supply. Chem Rev. 2015;115:8564–608.

    CAS 
    PubMed 

    Google Scholar
     

  • 27.

    Solar Q, Ojha T, Kiessling F, Lammers T, Shi Y. Enhancing tumor penetration of nanomedicines. Biomacromol. 2017;18:1449–59.

    CAS 

    Google Scholar
     

  • 28.

    Zhou Q, Shao S, Wang J, Xu C, Xiang J, Piao Y, Zhou Z, Yu Q, Tang J, Liu X, Gan Z, Mo R, Gu Z, Shen Y. Enzyme-activatable polymer–drug conjugate augments tumour penetration and remedy efficacy. Nat Nanotechnol. 2019;14:799–809.

    CAS 
    PubMed 

    Google Scholar
     

  • 29.

    Solar Q, Zhou Z, Qiu N, Shen Y. Rational design of most cancers nanomedicine: nanoproperty integration and synchronization. Adv Mater. 2017;29:1606628.


    Google Scholar
     

  • 30.

    Cheng W, Nie J, Gao N, Liu G, Tao W, Xiao X, Jiang L, Liu Z, Zeng X, Mei L. A Multifunctional nanoplatform in opposition to multidrug resistant most cancers: merging the perfect of focused chemo/gene/photothermal remedy. Adv Func Mater. 2017;27:1704135.


    Google Scholar
     

  • 31.

    Lewis DJ, Deshmukh P, Tedstone AA, Tuna F, O’Brien P. On the interplay of copper(II) with disulfiram. Chem Commun (Camb). 2014;50:13334–7.

    CAS 

    Google Scholar
     

  • 32.

    Yang B, Chen Y, Shi J. Nanocatalytic medication. Adv Mater. 2019;31:e1901778.

    PubMed 

    Google Scholar
     

  • 33.

    Wu W, Yu L, Jiang Q, Huo M, Lin H, Wang L, Chen Y, Shi J. Enhanced tumor-specific disulfiram chemotherapy by in situ Cu(2+) chelation-initiated nontoxicity-to-toxicity transition. J Am Chem Soc. 2019;141:11531–9.

    CAS 
    PubMed 

    Google Scholar
     

  • 34.

    Meng X, Jia Ok, Solar Ok, Zhang L, Wang Z. Sensible responsive nanoplatform by way of in situ forming disulfiram-copper ion chelation advanced for most cancers mixture chemotherapy. Chem Eng J. 2021;415:128947.

    CAS 

    Google Scholar
     

  • 35.

    Huang X, Zhang W, Guan G, Tune G, Zou R, Hu J. Design and functionalization of the NIR-responsive photothermal semiconductor nanomaterials for most cancers theranostics. Acc Chem Res. 2017;50:2529–38.

    CAS 
    PubMed 

    Google Scholar
     

  • 36.

    Abbas M, Zou Q, Li S, Yan X. Self-assembled peptide- and protein-based nanomaterials for antitumor photodynamic and photothermal remedy. Adv Mater. 2017;29:1605021.


    Google Scholar
     

  • 37.

    Wu W, Yu L, Pu Y, Yao H, Chen Y, Shi J. Copper-enriched prussian blue nanomedicine for in situ disulfiram toxification and photothermal antitumor amplification. Adv Mater. 2020;32:e2000542.

    PubMed 

    Google Scholar
     

  • 38.

    Liu W, Xiang H, Tan M, Chen Q, Jiang Q, Yang L, Cao Y, Wang Z, Ran H, Chen Y. Nanomedicine permits drug-potency activation with tumor sensitivity and hyperthermia synergy within the second near-infrared biowindow. ACS Nano. 2021;15:6457–70.

    CAS 
    PubMed 

    Google Scholar
     

  • 39.

    Rautio J, Kumpulainen H, Heimbach T, Oliyai R, Oh D, Järvinen T, Savolainen J. Prodrugs: design and medical functions. Nat Rev Drug Discov. 2008;7:255–70.

    CAS 
    PubMed 

    Google Scholar
     

  • 40.

    Liu Y, Bhattarai P, Dai Z, Chen X. Photothermal remedy and photoacoustic imaging by way of nanotheranostics in preventing most cancers. Chem Soc Rev. 2019;48:2053–108.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 41.

    Yin H, Zhou B, Zhao C, Solar L, Yue W, Li X, Li H, Li S, Xu H, Chen Y. 2D core/shell-structured mesoporous silicene@silica for focused and synergistic NIR-II-induced photothermal ablation and hypoxia-activated chemotherapy of tumors. Adv Funct Mater. 2021;31:2102043.

    CAS 

    Google Scholar
     

  • 42.

    Lo P-C, Rodríguez-Morgade MS, Pandey RK, Ng DKP, Torres T, Dumoulin F. The distinctive options and guarantees of phthalocyanines as superior photosensitisers for photodynamic remedy of most cancers. Chem Soc Rev. 2020;49:1041–56.

    CAS 
    PubMed 

    Google Scholar
     

  • 43.

    Chung CH, Jung W, Keum H, Kim TW, Jon S. Nanoparticles derived from the pure antioxidant rosmarinic acid ameliorate acute inflammatory bowel illness. ACS Nano. 2020;14:6887–96.

    CAS 
    PubMed 

    Google Scholar
     

  • 44.

    Cao Z, Ma Y, Solar C, Lu Z, Yao Z, Wang J, Li D, Yuan Y, Yang X. ROS-sensitive polymeric nanocarriers with pink light-activated measurement shrinkage for remotely managed drug launch. Chem Mater. 2018;30:517–25.


    Google Scholar
     

  • 45.

    Phua SZF, Xue C, Lim WQ, Yang G, Chen H, Zhang Y, Wijaya CF, Luo Z, Zhao Y. Gentle-responsive prodrug-based supramolecular nanosystems for site-specific mixture remedy of most cancers. Chem Mater. 2019;31:3349–58.

    CAS 

    Google Scholar
     

  • 46.

    Huang L, Wan J, Wu H, Chen X, Bian Q, Shi L, Jiang X, Yuan A, Gao J, Wang H. Quantitative self-assembly of photoactivatable small molecular prodrug cocktails for protected and potent most cancers chemo-photodynamic remedy. Nano Immediately. 2021;36:101030.

    CAS 

    Google Scholar
     

  • 47.

    Wang Y, Shi L, Wu W, Qi G, Zhu X, Liu B. Tumor-activated photosensitization and measurement transformation of nanodrugs. Adv Funct Mater. 2021;31:2010241.

    CAS 

    Google Scholar
     

  • 48.

    Wu W, Pu Y, Lin H, Yao H, Shi J. Hunger-sensitized and oxygenation-promoted tumor sonodynamic remedy by a cascade enzymatic strategy. Analysis. 2021;2021:9769867.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 49.

    Yu S, Chen Z, Zeng X, Chen X, Gu Z. Advances in nanomedicine for most cancers hunger remedy. Theranostics. 2019;9:8026–47.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 50.

    Tang Y, Ji Y, Yi C, Cheng D, Wang B, Fu Y, Xu Y, Qian X, Choonara YE, Pillay V, Zhu W, Liu Y, Nie Z. Self-accelerating H2O2-responsive plasmonic nanovesicles for synergistic chemo/ravenous remedy of tumors. Theranostics. 2020;10:8691–704.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 51.

    Li J, Li Y, Wang Y, Ke W, Chen W, Wang W, Ge ZJNL. Polymer prodrug-based nanoreactors activated by tumor acidity for orchestrated oxidation/chemotherapy. Nano Lett. 2017;17(11):7b03531.


    Google Scholar
     

  • 52.

    Shao F, Wu Y, Tian Z, Liu S. Biomimetic nanoreactor for focused most cancers hunger remedy and cascade amplificated chemotherapy. Biomaterials. 2021;274:120869.

    CAS 
    PubMed 

    Google Scholar
     

  • 53.

    Raffaghello L, Lee C, Safdie FM, Wei M, Madia F, Bianchi G, Longo VD. Hunger-dependent differential stress resistance protects regular however not most cancers cells in opposition to high-dose chemotherapy. Proc Natl Acad Sci. 2008;105:8215.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 54.

    Lee C, Raffaghello L, Brandhorst S, Safdie FM, Bianchi G, Martin-Montalvo A, Pistoia V, Wei M, Hwang S, Merlino A, Emionite L, de Cabo R, Longo VD. Fasting cycles retard progress of tumors and sensitize a spread of most cancers cell sorts to chemotherapy. Sci Transl Med. 2012;4:124ra27.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 55.

    Yang B, Chen Y, Shi J. Tumor-specific chemotherapy by nanomedicine-enabled differential stress sensitization. Angew Chem Int Ed Engl. 2020;59:9693–701.

    CAS 
    PubMed 

    Google Scholar
     

  • 56.

    Mellman I, Coukos G, Dranoff G. Most cancers immunotherapy comes of age. Nature. 2011;480:480–9.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 57.

    Gattinoni L, Powell DJ, Rosenberg SA, Restifo NP. Adoptive immunotherapy for most cancers: constructing on success. Nat Rev Immunol. 2006;6:383–93.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 58.

    Wagner J, Gossl D, Ustyanovska N, Xiong M, Hauser D, Zhuzhgova O, Hocevar S, Taskoparan B, Poller L, Datz S, Engelke H, Daali Y, Bein T, Bourquin C. Mesoporous silica nanoparticles as pH-responsive provider for the immune-activating drug resiquimod improve the native immune response in mice. ACS Nano. 2021;15:4450–66.

    CAS 
    PubMed 

    Google Scholar
     

  • 59.

    Cook dinner AM, Lesterhuis WJ, Nowak AK, Lake RA. Chemotherapy and immunotherapy: mapping the highway forward. J Curr Opin Immunol. 2016;39:23–9.

    CAS 

    Google Scholar
     

  • 60.

    Lu J, Liu X, Liao YP, Salazar F, Solar B, Jiang W, Chang CH, Jiang J, Wang X, Wu AMJNC. Nano-enabled pancreas most cancers immunotherapy utilizing immunogenic cell demise and reversing immunosuppression. Nat Commun. 1811;2017:8.


    Google Scholar
     

  • 61.

    Ghiringhelli F, Apetoh LJFO. Chemotherapy and immunomodulation: from immunogenic chemotherapies to novel therapeutic methods. Future Oncol. 2013;9:469–72.

    CAS 
    PubMed 

    Google Scholar
     

  • 62.

    Zhao L, Zheng R, Liu L, Chen X, Guan R, Yang N, Chen A, Yu X, Cheng H, Li S. Self-delivery oxidative stress amplifier for chemotherapy sensitized immunotherapy. Biomaterials. 2021;275:120970.

    CAS 
    PubMed 

    Google Scholar
     

  • 63.

    Chen DS, Mellman I. Oncology meets immunology: the cancer-immunity cycle. Immunity. 2013;39:1–10.

    PubMed 

    Google Scholar
     

  • 64.

    Wang Y, Wang Z, Chen B, Yin Q, Pan M, Xia H, Zhang B, Yan Y, Jiang Z, Zhang Q, Wang Y. Cooperative self-assembled nanoparticle induces sequential immunogenic cell demise and toll-like receptor activation for synergistic chemo-immunotherapy. Nano Lett. 2021;21:4371–80.

    CAS 
    PubMed 

    Google Scholar
     

  • 65.

    Wu W, Pu Y, Lu X, Lin H, Shi J. Transitional metal-based noncatalytic medication for tumor remedy. Adv Healthc Mater. 2021;10:e2001819.

    PubMed 

    Google Scholar
     

  • 66.

    Wei G, Wang Y, Yang G, Wang Y, Ju R. Current progress in nanomedicine for enhanced most cancers chemotherapy. Theranostics. 2021;11:6370–92.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 67.

    Zhang D, Zhang J. Floor engineering of nanomaterials with phospholipid-polyethylene glycol-derived practical conjugates for molecular imaging and focused remedy. Biomaterials. 2020;230:119646.

    CAS 
    PubMed 

    Google Scholar
     

  • 68.

    Tay CY, Setyawati MI, Leong DT. Nanoparticle density: a crucial biophysical regulator of endothelial permeability. ACS Nano. 2017;11:2764–72.

    CAS 
    PubMed 

    Google Scholar
     

  • 69.

    Tee JK, Yip LX, Tan ES, Santitewagun S, Prasath A, Ke PC, Ho HK, Leong DT. Nanoparticles’ interactions with vasculature in ailments. Chem Soc Rev. 2019;48:5381–407.

    CAS 
    PubMed 

    Google Scholar
     

  • 70.

    Solar H, Zhang Q, Li J, Peng S, Wang X, Cai R. Close to-infrared photoactivated nanomedicines for photothermal synergistic most cancers remedy. Nano Immediately. 2021;37:101073.

    CAS 

    Google Scholar
     

  • 71.

    Zou L, Chen X, Servati A, Soltanian S, Servati P, Wang ZJ. A blind supply separation framework for monitoring coronary heart beat price utilizing nanofiber-based pressure sensors. IEEE Sens J. 2016;16:762–72.


    Google Scholar
     

  • 72.

    Hu JJ, Cheng YJ, Zhang XZJN. Current advances in nanomaterials for enhanced photothermal remedy of tumors. Nanoscale. 2018;10:22657–72.

    CAS 
    PubMed 

    Google Scholar
     

  • Leave a Reply

    Your email address will not be published. Required fields are marked *