Dilution impact for extremely environment friendly multiple-component natural photo voltaic cells
Yan, C. et al. Non-fullerene acceptors for natural photo voltaic cells. Nat. Rev. Mater. 3, 18003 (2018).
Hou, J., InganƤs, O., Buddy, R. H. & Gao, F. Natural photo voltaic cells primarily based on non-fullerene acceptors. Nat. Mater. 17, 119ā128 (2018).
Cheng, P., Li, G., Zhan, X. & Yang, Y. Subsequent-generation natural photovoltaics primarily based on non-fullerene acceptors. Nat. Photon. 12, 131ā142 (2018).
Bae, S.-H. et al. Printable photo voltaic cells from superior solution-processible supplies. Chem 1, 197ā219 (2016).
Li, N., McCulloch, I. & Brabec, C. J. Analyzing the effectivity, stability and value potential for fullerene-free natural photovoltaics in a single determine of benefit. Vitality Environ. Sci. 11, 1355ā1361 (2018).
Meng, L. et al. Natural and solution-processed tandem photo voltaic cells with 17.3% effectivity. Science 361, 1094ā1098 (2018).
Zuo, L. et al. Polymer-modified halide perovskite movies for environment friendly and steady planar heterojunction photo voltaic cells. Sci. Adv. 3, e1700106 (2017).
Yang, W. S. et al. Iodide administration in formamidinium-lead-halide-based perovskite layers for environment friendly photo voltaic cells. Science 356, 1376ā1379 (2017).
Li, S. et al. Uneven electron acceptors for high-efficiency and low-energy-loss natural photovoltaics. Adv. Mater. 32, 2001160 (2020).
Zhan, L. et al. Over 17% effectivity ternary natural photo voltaic cells enabled by two non-fullerene acceptors working in an alloy-like mannequin. Vitality Environ. Sci. 13, 635ā645 (2020).
Lu, L., Kelly, M. A., You, W. & Yu, L. Standing and prospects for ternary natural photovoltaics. Nat. Photon. 9, 491ā500 (2015).
Yang, L., Yan, L. & You, W. Natural photo voltaic cells past one pair of donorāacceptor: Ternary blends and extra. J. Phys. Chem. Lett. 4, 1802ā1810 (2013).
Road, R. A., Davies, D., Khlyabich, P. P., Burkhart, B. & Thompson, B. C. Origin of the tunable open-circuit voltage in ternary mix bulk heterojunction natural photo voltaic cells. J. Am. Chem. Soc. 135, 986ā989 (2013).
Khlyabich, P. P., Sezen-Edmonds, M., Howard, J. B., Thompson, B. C. & Lavatory, Y.-L. Formation of natural alloys in ternary-blend photo voltaic cells with two acceptors having energy-level offsets exceeding 0.4āeV. ACS Vitality Lett. 2, 2149ā2156 (2017).
Zhang, J. et al. Conjugated polymerāsmall molecule alloy results in excessive environment friendly ternary natural photo voltaic cells. J. Am. Chem. Soc. 137, 8176ā8183 (2015).
Khlyabich, P. P., Burkhart, B. & Thompson, B. C. Compositional dependence of the open-circuit voltage in ternary mix bulk heterojunction photo voltaic cells primarily based on two donor polymers. J. Am. Chem. Soc. 134, 9074ā9077 (2012).
Chen, Y. et al. Reaching high-performance ternary natural photo voltaic cells via tuning acceptor alloy. Adv. Mater. 29, 1603154 (2017).
Zhang, J. et al. Correct willpower of the minimal HOMO offset for environment friendly cost era utilizing natural semiconducting alloys. Adv. Vitality Mater. 10, 1903298 (2020).
Liu, X., Yan, Y., Yao, Y. & Liang, Z. Ternary mix technique for attaining high-efficiency natural photo voltaic cells with nonfullerene acceptors concerned. Adv. Funct. Mater. 28, 1802004 (2018).
Kawamura, Y. et al. 100% phosphorescence quantum effectivity of Ir(III) complexes in natural semiconductor movies. Appl. Phys. Lett. 86, 071104 (2005).
Zhang, Q. et al. Environment friendly blue natural light-emitting diodes using thermally activated delayed fluorescence. Nat. Photon. 8, 326 (2014).
BuloviÄ, V., Deshpande, R., Thompson, M. E. & Forrest, S. R. Tuning the colour emission of skinny movie molecular natural gentle emitting gadgets by the stable state solvation impact. Chem. Phys. Lett. 308, 317ā322 (1999).
Madigan, C. F. & BuloviÄ, V. Strong state solvation in amorphous natural skinny movies. Phys. Rev. Lett. 91, 247403 (2003).
Northey, T., Stacey, J. & Penfold, T. J. The function of stable state solvation on the cost switch state of a thermally activated delayed fluorescence emitter. J. Mater. Chem. C 5, 11001ā11009 (2017).
Shi, X. et al. Design of a extremely crystalline low-band hole fused-ring electron acceptor for high-efficiency photo voltaic cells with low power loss. Chem. Mater. 29, 8369ā8376 (2017).
Hong, Y., Lam, J. W. Y. & Tang, B. Z. Aggregation-induced emission: phenomenon, mechanism and functions. Chem. Commun. 29, 4332ā4353 (2009).
Park, S. Okay. et al. Tailored extremely luminescent and ambipolar transporting natural combined stacked charge-transfer crystals: an isometric donorāacceptor method. J. Am. Chem. Soc. 135, 4757ā4764 (2013).
Slifkin, M. A. Cost switch and excimer formation. Nature 200, 766ā767 (1963).
Benduhn, J. et al. Intrinsic non-radiative voltage losses in fullerene-based natural photo voltaic cells. Nat. Vitality 2, 17053 (2017).
Liu, X., Li, Y., Ding, Okay. & Forrest, S. Vitality loss in natural photovoltaics: nonfullerene versus fullerene acceptors. Phys. Rev. Appl. 11, 024060 (2019).
de Jong, M., Seijo, L., Meijerink, A. & Rabouw, F. T. Resolving the anomaly within the relation between Stokes shift and HuangāRhys parameter. Phys. Chem. Chem. Phys. 17, 16959ā16969 (2015).
Hong, Y., Lam, J. W. Y. & Tang, B. Z. Aggregation-induced emission. Chem. Soc. Rev. 40, 5361ā5388 (2011).
Gasparini, N., Salleo, A., McCulloch, I. & Baran, D. The function of the third element in ternary natural photo voltaic cells. Nat. Rev. Mater. 4, 229ā242 (2019).
Rau, U., Clean, B., Müller, T. C. M. & Kirchartz, T. Effectivity potential of photovoltaic supplies and gadgets unveiled by detailed-balance evaluation. Phys. Rev. Appl. 7, 044016 (2017).
Wang, Y. et al. Optical gaps of natural photo voltaic cells as a reference for evaluating voltage losses. Adv. Vitality Mater. 8, 1801352 (2018).
Baran, D. et al. Decreasing the effectivityāstabilityāprice hole of natural photovoltaics with extremely environment friendly and steady small molecule acceptor ternary photo voltaic cells. Nat. Mater. 16, 363ā369 (2017).
Liu, Y., Zuo, L., Shi, X., Jen, A. Okay. Y. & Ginger, D. S. Unexpectedly gradual but environment friendly picosecond to nanosecond photoinduced hole-transfer happens in a polymer/nonfullerene acceptor natural photovoltaic mix. ACS Vitality Lett. 3, 2396ā2403 (2018).
Cha, H. et al. Affect of mix morphology and energetics on cost separation and recombination dynamics in natural photo voltaic cells incorporating a nonfullerene acceptor. Adv. Funct. Mater. 28, 1704389 (2018).
Ziffer, M. E. et al. Lengthy-lived, non-geminate, radiative recombination of photogenerated costs in a polymer/small-molecule acceptor photovoltaic mix. J. Am. Chem. Soc. 140, 9996ā10008 (2018).
Szarko, J. M. et al. Photovoltaic perform and exciton/cost switch dynamics in a extremely environment friendly semiconducting copolymer. Adv. Funct. Mater. 24, 10ā26 (2014).
Zhang, M., Wang, H., Tian, H., Geng, Y. & Tang, C. W. Bulk heterojunction photovoltaic cells with low donor focus. Adv. Mater. 23, 4960ā4964 (2011).
BƤssler, H. Cost transport in disordered natural photoconductors a Monte Carlo simulation research. Phys. Standing Solidi B 175, 15ā56 (1993).
Kirkpatrick, S. Percolation and conduction. Rev. Mod. Phys. 45, 574ā588 (1973).
Lim, D. U., Kim, S., Choi, Y. J., Jo, S. B. & Cho, J. H. Percolation-limited twin cost transport in vertical pān heterojunction Schottky barrier transistors. Nano Lett. 20, 3585ā3592 (2020).
Cui, Y. et al. Single-junction natural photovoltaic cells with approaching 18% effectivity. Adv. Mater. 32, 1908205 (2020).